
Unit – 1 Introduction to Software Engineering

T.Y.B.Sc. Sem – V Subject – Software Engineering

1.1 Software and Software Engineering 

1.2 Evolution of Software 

1.3 Software Characteristics 

1.4 Software Applications 

1.5 Software Myths 

1.6 Software Process 

1.7 Software Development Life Cycle (SDLC)

Prof. A. P. Chaudhari (M.Sc., SET)
HOD, Department of Computer Science

SVS’s Dadasaheb Rawal College, Dondaicha



1.1) Software and Software Engineering:

The term Software Engineering is made of two words, software and engineering.

2

Software is more than just a program

code. A program is an executable code, which

serves some computational purpose.

Software is considered to be collection of

executable programming code, associated

libraries and documentations. Software, when

made for a specific requirement is called

software product.

Engineering on the other hand, is all about developing products, using well-

defined, scientific principles and methods.



1.1) Software and Software Engineering:

Software engineering is an engineering branch associated with

development of software product using well-defined scientific principles, methods

and procedures. The outcome of software engineering is an efficient and reliable

software product.

Definition:

IEEE defines software engineering as: 

The application of a systematic, disciplined, quantifiable approach to the

development, operation, and maintenance of software; that is, the application of

engineering to software.

3



1.2) Evolution of Software:

The process of developing a software product using software engineering

principles and methods is referred to as Software Evolution. This includes the

initial development of software and its maintenance and updates, till desired

software product is developed, which satisfies the expected requirements.

4



1.2) Evolution of Software:

Evolution starts from the requirement gathering process. After which

developers create a prototype of the intended software and show it to the users to

get their feedback at the early stage of the software product development. The

users suggest changes, on which several consecutive updates and maintenance

keep on changing too. This process changes to the original software, till the

desired software is accomplished.

Even after the user has the desired software in hand, the advancing

technology and the changing requirements force the software product to change

accordingly. Re-creating software from scratch and to go one-on-one with the

requirement is not feasible. The only feasible and economical solution is to update

the existing software so that it matches the latest requirements. 5



1.3) Software Characteristics:

To gain an understanding of software, it is important to examine the

characteristics of software that make it different from other things that human being

build the human creative process is ultimately translated into physical form. Software

is logical rather than physical system element. Its behavior and nature is quite different

than other products of human life.

Some of the important characteristics of software are discussed below:

1) Software does not wear out:

There are three phases for the life of a hardware product. Initial phase is burn-

in phase where failure intensity is high before delivery it is expected to test the

product. Due to testing, failure intensity will come down initially. Second phase is

useful life phase where failure is constants. Third phase is wear out phase in which

again intensity will increase due to wearing out of components.
6



1.3) Software Characteristics:

Important point is software become reliable overtime instead of wearing out. It

becomes obsolete (outdated), if the environment for which it was developed. Hence

software may be retired due to environmental changes, new requirements, new

expectations, etc.

2) Software is not manufactured:

Software or hardware both get manufactured in the same manner and both of

them users the design model to implement the product. The only difference is in their

implementation part. They both differ in their coding part so it is said that software is

not manufactured but it is developed or engineered.

3) Reusability of Components:

If we have to manufacture a TV, we may purchase picture tube from one

vendor, cabinet from another and other electronic components from third vendor.
7



1.3) Software Characteristics:

We will assemble every part and test the product thoroughly to produce a

good quality TV. We may have standard quality guidelines and effective processes

to produce a good quality product. Reusability is the common component which

we use in our process. During software development, we don’t need to start writing

the code from the beginning. We can use already developed software to develop

another one.

4) Software is flexible:

A program can be developed to do almost anything. Software can be

developed for solving any type of problem and can also be change if the

requirement changes.

8



1.4) Software Applications:

Software may be applied in any situation for which a pre-specified set of

procedural steps has been defined. Information content is important factors in

determining the nature of a software application. Content refers to the meaning

and form of incoming an outgoing information. For example many business

application make use of highly structured input data and produce formatted

“Reports”, Software that controls an automated machine accepts discrete data

items with limited structure and produces individual machine commands in rapid

succession.

It is somewhat difficult to develop meaningful generic categories for

software applications. The following software areas indicate the breadth of

potential applications: 9



1.4) Software Applications:

1) System Software: System software is a collection of programs written to

service other programs. Some system software (e.g. compilers, editors and file

management utilities) processes complex but determinate information structures.

Other systems application (e.g. operating system components drivers

telecommunications processors) process largely indeterminate data. In either case

the systems software area is characterized by heavy interaction with computer

hardware heavy usage by multiple users; concurrent operation that requires

scheduling resource sharing and sophisticated process management ; complex

data structures and multiple external interfaces.

10



1.4) Software Applications:

2) Business Software: Business information processing is the largest single software

application area. Discrete “systems” (e.g., payroll accounts receivable/payable inventory,

etc.,) have evolved into management information system (MIS) software that accesses

one or more large databases containing business information. Applications in this area

restructure existing data in a way that facilitates business operation or management

decision making.

3) Engineering and Scientific Software: Engineering and Scientific software has been

characterized by “number of” algorithms. Application range from astronomy to volcanology

and from molecular biology to automated manufacturing. However new applications with

the engineering/scientific area are moving away from traditional numerical algorithms.

Computer aided design (CAD) system simulation and other interactive applications have

begun to take on real-time and even system software characteristics. 11



1.4) Software Applications:

4) Embedded Software: Intelligent products have become commonplace in nearly

every consumer and industrial market. Embedded software resides in read only

memory and is used to control products and systems for the consumer and

industrial markets. Embedded software can perform very limited and secret

functions (e.g. digital functions in an automobile such as fuel control, dashboard

displays, etc.).

5) Personal Computer Software: The personal computer software market has

growing over the past decade. Word processing, spreadsheets, computer

graphics, multimedia entertainment, database management personal and business

financial applications and external network or database access are only a few of

hundreds of application. 12



1.4) Software Applications:

6) Artificial Intelligence Software: Artificial Intelligence (AI) software makes use of non

numerical logarithms to solve complex problems. An active AI area is expert systems

also called knowledge-based systems. However other application areas for AI software

are pattern recognition (image and voice) theorem proving and game playing. In recent

years a new branch of AI software called artificial neural networks, has evolved.

7) Real-Time Software Programs that monitor/analyze/ control real world events as

they occur are called real-time software. Elements of real-time software include a data

gathering component that collects and formats information from an external environment

an analysis component that transforms information as required by the application a

control / output component that responds to the external environment so that real-time

response (typically ranging from 1 millisecond to 1 minute ) can be maintained.

13



1.5) Software Myths:

Today most knowledgeable professionals recognize myths for what they are—

misleading attitudes that have caused serious problems of managers and technical people

alike. However old attitudes and habits are difficult to modify software myths are still

believed.

Management Myths: Managers with software responsibility like managers in most

disciplines are often under pressure to maintain budgets keep schedules from slipping and

improve quality.

Myth: We already have a book that’s full of standard and procedures for building software.

Won’t that provide my people with everything they need to know?

Reality: The book of standards may very well exist, but is it used? Are software

practitioners aware of its existence? Does it reflect modern software development

practice? Is it complete? In many cases the answer to all of these question is “no”. 14



1.5) Software Myths:

Myth: My people do have state of the art software development tools, After all we buy

them the newest computers.

Reality: It takes much more that the latest model mainframe workstation or PC to do high

quality software development. Computer aided software engineering (CASE) tools are

more important than hardware for achieving good quality and productivity yet the majority

of software developers still do not use them.

Myth: If we get behind schedule we can add more programmers and catch up.

Reality: Software development is not a mechanistic process like manufacturing. In the

other words, “adding people to a late software project makes it later”. However as new

people are added people who were working must spend time education the newcomers

hereby reducing the amount of time spent on productive development effort. People can

be added but only in a planned and well coordinated manner. 15



1.5) Software Myths:

Consumer Myths: A customer who request computer software may be a person at the

next desk, a technical group down the hall the marketing /sales department or an outside

company that has requested software under contract. In many cases the customer

believes myths about software because software responsible managers and practitioners

do little to correct misinformation (Myths) lead to false

expectations (by the consumer) and ultimately dissatisfaction with the developer.

Myth: A general statement of objectives is sufficient to begin writing programs we can fill

in details later.

Reality: poor up-front definition is the major cause of failed software efforts. A formal and

detailed description of information domain, function performance interfaces, design

constraints and validation criteria is essential. These characteristic can be determined only

after through communication between customer and developer. 16



1.5) Software Myths:

Myth: Project requirements continually change, but change can be easily accommodated

because software is flexible.

Reality: It is true that software requirements do change, but the impact of change varies

with the time at which it is introduced. If serous attention is given to up-front definition

early requests for change can be accommodated easily. The customer can review

requirements and recommend modification with relatively little impact on cost. When

changes are requested during software design cost impact grows rapidly. Resources have

been committed and a design framework has been established. Change can cause

upheaval that requires additional resources and major design modification i.e., additional

cost, Changes in function, performance interfaces or other characteristics during

implementation (code and test ) have a severe impact on cost. Change, when requested

after software is in production use can be more than the same change requested earlier.17


